sábado, 18 de junio de 2011

Concepto de Gluconegenesis

Gluconeogénesis
Gluconeogénesis es el proceso de formación de carbohidratos a partir de ácidos grasos y proteínas, en lugar de hacerlo de carbohidratos. Intervienen, además del piruvato, otros sustratos como aminoácidos y glicerol. Se realiza en el citosol de las células hepáticas y en él intervienen las enzimas glucosa-6-fosfatasa, fructosa 1,6-bifosfatasa y fosfoenolpiruvato carboxicinasa, en lugar de hexocinasa, fosfofructocinasa y piruvato cinasa, respectivamente, que son estas últimas las enzimas que intervienen en la glucolisis.


El aminoácido alanina, transportado del músculo al hígado, puede convertirse en glucosa.


En el tejido adiposo, los acilgliceroles, mediante hidrólisis, pasan continuamente a glicerol libre, que llega al hígado en donde, inicialmente, se convierte en fructosa 1,6 bifosfato y posteriormente en glucosa.


Glucógeno
Glucógeno es un polisacárido, formado a partir de glucosa. En los animales, cuando la glucosa excede sus concentraciones circulantes y no se utiliza como fuente de energía, se almacena en forma de glucógeno, preferentemente en hígado y músculo. La principal función del glucógeno, en el hígado, es la de proporcionar glucosa cuando no está disponible de las fuentes dietéticas. En el músculo suministra aportes inmediatos de combustible metabólico.


Glucogenolisis
Glucogenolisis es el proceso por el que los depósitos de glucógeno se convierten en glucosa. Si el aporte de glucosa es deficiente, el glucógeno se hidroliza mediante la acción de las enzimas fosforilasa y desramificante, que producen glucosa-1-fosfato, que pasa a formar, por medio de fosfoglucomutasa, glucosa-6-fosfato, la cual por la acción de glucosa-6-fosfatasa, sale de la célula en forma de glucosa, tras pases previos a glucosa-1-fosfato y glucosa-6-fosfato


Glucogénesis
Es el proceso inverso al de glucogenolisis. La vía del glucógeno tiene lugar en el citosol celular y en él se requieren: a) tres enzimas, cuales son uridina difosfato (UDP)-glucosa pirofosforilasa, glucógeno sintasa y la enzima ramificadora, amilol transglicosilasa,donante de glucosa, UDP-glucosa, cebador para iniciar la síntesis de glucógeno si no hay una molécula de glucógeno preexistente, d) energía


Regulación del metabolismo del glucógeno
Es un proceso muy complejo y todavía no bien conocido. En él hay que considerar dos niveles: alostérico y hormonal. El control alostérico depende fundamentalmente de las acciones de las enzimas fosforilasa y glucógeno sintasa. A nivel hormonal, la adrenalina en el músculo y en hígado, y el glucagón, solo en el hígado, estimulan el fraccionamiento del glucógeno. Aunque la acción de la insulina no es bien conocido, al tratarse de una hormona anabólica se asume que estimula la síntesis e inhibe la rotura del glucógeno.

Concepto de Glucolisis


Se denomina glucolisis a un conjunto de reacciones enzimáticas en las se metabolizan glucosa y otros azúcares, liberando energía en forma de ATP. La glucolisis aeróbica, que es la realizada en presencia de oxígeno, produce ácido pirúvico, y la glucolisis anaeróbica, en ausencia de oxígeno, ácido láctico.

La glucolisis es la principal vía para la utilización de los monosacáridos glucosa, fructosa y galactosa, importantes fuentes energéticas de las dietas que contienen carbohidratos. Durante la fase postabsortiva la glucosa procede, además, de otras fuentes. Tras el proceso de absorción intestinal, los azúcares glucosa, fructosa y galactosa son transportados, por la vena porta, al hígado, en donde la fructosa y la galactosa se convierten rápidamente en glucosa. La fructosa puede entrar, directamente en la vía de la glucolisis.

La glucolisis se realiza en el citosol de todas las células. Aunque son muchas las reacciones catalizadas por diferentes enzimas, la glucolisis está regulada, principalmente, por tres enzimas: hexocinasa, fosfofructocinasa y piruvatocinasa, las cuales intervienen en el paso de las hexosas a piruvato. En condiciones aeróbicas, el piruvato es transportado al interior de las mitocondrias, mediante un transportador, en donde es decarboxilado a acetil CoA, que entra en el ciclo del ácido cítrico. En condiciones anaeróbicas, el piruvato se convierte a lactato, que es tranportado al hígado, en donde interviene en el proceso de gluconeogénesis, y pasa de nuevo a la circulación para intervenir en la oxidación de los tejidos y en el ciclo del ácido láctico, o de Cori.

Los oligosacáridos y polisacáridos, no digeridos y no absorbidos en el intestino delgado, llegan al grueso en donde son hidrolizados a monosacáridos por enzimas membranosas secretadas por bacterias, los monosacáridos se convierten a piruvato, que es inmediatamente metabolizado a ácidos grasos de cadena corta, como acetato, propionato, butirato, y a gases, como dióxido de carbono, metano e hidrógeno.

metabolismo de los carbohidratos

Se define como metabolismo de los carbohidratos a los procesos bioquímicos de formación, ruptura y conversión de los carbohidratos en los organismos vivos. Los carbohidratos son las principales moléculas destinadas al aporte de energía, gracias a su fácil metabolismo.
El carbohidrato más común es la glucosa; un monosacárido metabolizado por casi todos los organismos conocidos. La oxidación de un gramo de carbohidratos genera aproximadamente 4 kcal de energía; algo menos de la mitad que la generada desde lípidos.

los carbohidratos por medio del tubo digetivo

Digestion es la conversión de los alimentos en sustancias absorbibles en el tracto gastrointestinal. Se realiza por el desdoblamiento, mecánico y químico de los alimentos, en moléculas. En resumen, la digestión se inicia en la boca, continúa en el esófago y en el estómago y sigue en el intestino delgado favorecida por secreciones biliares, pancreáticas y por el moco y líquido extracelular segregado por las criptas de Lieberkuhn de la mucosa del intestino delgado. Además, una serie de enzimas de las microvellosidades de la superficie intestinal realizan una degradación de los carbohidratos y de las proteínas, que son absorbidos en el epitelio intestinal.

Respiracion anaerobicas de los carbohidratos




La respiración aeróbica es un tipo de metabolismo energético en el que los seres vivos extraen energía de moléculas orgánicas, como la glucosa, por un proceso complejo en el que el carbono es oxidado y en el que el oxígeno procedente del aire es el oxidante empleado. En otras variantes de la respiración, muy raras, el oxidante es distinto del oxígeno (respiración anaeróbica).
La respiración aeróbica es el proceso responsable de que la mayoría de los seres vivos, los llamados por ello aerobios, requieran oxígeno. La respiración aeróbica es propia de los organismos eucariontes en general y de algunos tipos de bacterias.
El oxígeno que, como cualquier gas, atraviesa sin obstáculos las membranas biológicas, atraviesa primero la membrana plasmática y luego las membranas mitocondriales, siendo en la matriz de la mitocondria donde se une a electrones y protones (que sumados constituyen átomos de hidrógeno) formando agua. En esa oxidación final, que es compleja, y en procesos anteriores se obtiene la energía necesaria para la fosforilación del ATP.
En presencia de oxígeno, el ácido pirúvico, obtenido durante la fase primera anaerobia o glucólisis, es oxidado para proporcionar energía, dióxido de carbono y agua.
A esta serie de reacciones se le conoce con el nombre de respiración aeróbica.